Roots of polynomials Cheat Sheet

This chapter is concerned with identifying the relationship between the roots of quadratic, cubic and quartic polynomials.
Roots of a quadratic equation
A quadratic equation could have 2 real roots, or 2 complex roots.

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are roots of the equation $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}=\mathbf{0}$, then:
$\Rightarrow \alpha+\beta=-\frac{b}{a}$
$\Rightarrow \alpha \beta=\frac{c}{a}$

Roots of a cubic equation
A cubic equation could have 3 real roots or 1 real root and 2 complex roots.

- If $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and γ are roots of the equation $\boldsymbol{a} \boldsymbol{x}^{3}+\boldsymbol{b} \boldsymbol{x}^{2}+\boldsymbol{c} \boldsymbol{x}+\boldsymbol{d}=\mathbf{0}$, then:
$\Rightarrow \alpha+\beta+\gamma=-\frac{b}{a}$
$\Rightarrow \alpha \beta+\beta \gamma+\gamma \alpha \stackrel{a}{=} \frac{c}{a}$
$\Rightarrow \alpha \beta \gamma=-\frac{d}{a}$

Roots of a quartic equation
A quartic equation could have 4 real roots, 4 complex roots or 2 real and 2 complex roots.

- If $\boldsymbol{\alpha} . \boldsymbol{\beta}, \gamma$ and $\boldsymbol{\delta}$ are roots of the equation $\boldsymbol{a x ^ { 4 }}+\boldsymbol{b} \boldsymbol{x}^{3}+\boldsymbol{c} \boldsymbol{x}^{2}+\boldsymbol{d x}+\boldsymbol{e}=\mathbf{0}$, then:
$\Rightarrow \alpha+\beta+\gamma+\delta=-\frac{b}{a}$
$\Rightarrow \alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta=\frac{c}{a}$
$\Rightarrow \alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta=-\frac{d}{a}$
$\Rightarrow \alpha \beta \gamma \delta=\frac{e}{a}$

```
You can use the following abbreviations
You can use the fo:
\sum\alpha=-\frac{b}{a},\sum\alpha\beta=\frac{c}{a},\sum\alpha\beta\gamma=-\frac{d}{a}
```

Expressions relating to the roots of a polynomial
You can use the following rules to quickly find the values of some expressions concerning the roots of a polynomial:

- Products of powers:

Quadratic: $\Rightarrow \boldsymbol{\alpha}^{n} \times \boldsymbol{\beta}^{n}=(\boldsymbol{\alpha} \boldsymbol{\beta})^{n}$
cubic: $\quad \Rightarrow \alpha^{n} \times \beta^{n} \times \gamma^{n}=(\alpha \boldsymbol{\beta} \gamma)^{n}$

- Rules for sums of squares
s:
$+\beta)^{2}-2 \alpha \beta$
Quadratic: $\Rightarrow \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$
cubic: $\quad \Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha)$
$\begin{array}{ll}\text { cubic: } & \Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\ \text { Quartic: } & \Rightarrow \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\alpha+\beta+\gamma+\delta)^{2}-2(\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+\beta \delta+\gamma \delta)\end{array}$
- Rules for sums of cubes:

Quadratic: $\quad \Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
$\begin{array}{ll}\text { Quadratic: } & \Rightarrow \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta) \\ \text { cubic: } & \Rightarrow \alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)^{3}-3(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)+3 \alpha \beta \gamma\end{array}$
You won't need to know the
result for a quartic polynomial.

Edexcel Core Pure 1

Example 2: The equation $m x^{2}+4 x+4 m=0$ has roots of the form k and $2 k$. Find the values of m and k.	
Using $\alpha+\beta=-\frac{b}{a}$:	$\alpha+\beta=k+2 k=3 k=-\frac{4}{m}$
Simplifying:	$\therefore m=-\frac{4}{3 k}$
Using $\alpha \boldsymbol{\beta}=\frac{c}{a}$:	$\alpha \beta=(k)(2 k)=2 k^{2}=\frac{4 m}{m}=4$
Simplifying and solving for k :	$\begin{aligned} & \therefore k^{2}=2 \\ & \text { So } k= \pm \sqrt{2} \end{aligned}$
We have two sets of solutions because k has two possible values. Use $m=-\frac{4}{3 k}$ to find the corresponding value of m in each case.	$\begin{aligned} & \text { If } k=\sqrt{2}, m=-\frac{4}{3 \sqrt{2}}=-\frac{2 \sqrt{2}}{3} \\ & \text { If } k=-\sqrt{2}, m=\frac{4}{3 \sqrt{2}}=\frac{2 \sqrt{2}}{3} \end{aligned}$

Example 4: The roots of the equation $x^{4}+2 x^{2}-x+3=0$ are α, β, y and δ. (a) Write down the values of $\sum \alpha, \sum \alpha \beta, \sum \alpha \beta \gamma$ and $\sum \alpha \beta \gamma \delta$.	
$\begin{array}{ll}\text { (i) } \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta} & \text { (i) } \alpha^{2}+\beta^{2}+\gamma^{2}+\end{array}$	(iii) $(\alpha+1)(\beta+1)(\gamma+1)(\delta+1)$
Using $\sum \alpha=\alpha+\beta+\gamma+\delta=-\frac{b}{a}$:	$\alpha+\beta+\gamma+\delta=0$
Using $\sum \alpha \beta=\frac{c}{a}$	$\begin{aligned} \alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma & +\beta \delta+\gamma \delta \\ & =\frac{2}{1}=2 \end{aligned}$
Using $\sum \alpha \beta \gamma=-\frac{d}{a}$	$\begin{gathered} \sum \alpha \beta \gamma=\alpha \beta \gamma+\alpha \beta \delta+\alpha \gamma \delta+\beta \gamma \delta \\ =-\frac{-1}{1}=1 \end{gathered}$
Using $\alpha \beta \gamma \delta=\frac{e}{a}$	$\sum \alpha \beta \gamma \delta=\alpha \beta \gamma \delta=\frac{3}{1}=3$
$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{\alpha \beta \gamma+\beta \gamma \delta+\gamma \delta \alpha+\delta \alpha \beta}{\alpha \beta \gamma \delta}$	$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{\sum \alpha \beta \gamma}{\alpha \beta \gamma \delta}=\frac{1}{3}$
$\begin{aligned} & \text { Using } \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}=(\alpha+\beta+ \\ & \gamma+\delta)^{2}-2(\alpha \beta+\alpha \gamma+\alpha \delta+\beta \gamma+ \\ & \beta \delta+\gamma \delta) \end{aligned}$	$\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2} \\ & =\left(\sum^{2} \alpha\right)^{2}-2\left(\sum^{2} \alpha \beta\right) \\ & =(0)^{2}-2(2)=-4 \end{aligned}$

Linear transformations of roots
Given a polynomial (up to the fourth degree), you need to be able to find the equation of a second polynomial whose roots are a linear transformation of the roots of the first.

- If a polynomial $f(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$ has roots α, β, γ and δ then the polynomial with roots $g \alpha+h, g \beta+h, g \gamma+h$ and $g \delta+h$, where g and h are real constants, is given by $f\left(\frac{w-h}{g}\right)$.
The same logic follows if the polynomial is cubic or quadratic.

Example 5: The quartic equation $2 x^{4}+4 x^{3}-5 x^{2}+2 x-1=0$ has roots α, β, γ and δ. Find equations with integer coefficients that have roots: (i) $(2 \alpha),(2 \beta),(2 \gamma)$ and (2 2). (ii) $(\alpha-1),(\beta-1),(\gamma-1)$ and $(\delta-1)$.	
(i) If $f(x)=x^{4}+4 x^{3}-5 x^{2}+2 x-1=0$ then the new equation will be given by $f\left(\frac{w}{2}\right)$.	$f\left(\frac{w}{2}\right)=2\left(\frac{w}{2}\right)^{4}+4\left(\frac{w}{2}\right)^{3}-5\left(\frac{W}{2}\right)^{2}+2\left(\frac{w}{2}\right)-1=0$
Simplifying:	$\Rightarrow \frac{1}{8} w^{4}+\frac{1}{2} w^{3}-\frac{5}{4} w^{2}+w-1=0$
Multiplying by 8 to ensure all coefficients are integers:	$\Rightarrow w^{4}+4 w^{3}-10 w^{2}+8 w-8=0$
(ii) If $f(x)=x^{4}+4 x^{3}-5 x^{2}+2 x-1=0$ then the new equation will be given by $f(w+1)$.	$f(w+1)=2(w+1)^{4}+4(w+1)^{3}-5(w+1)^{2}+2(w+1)-1=0$
Expanding brackets then simplifying:	$\begin{aligned} & \Rightarrow 2\left(w^{4}+4 w^{3}+6 w^{2}+4 w+1\right)+4\left(w^{3}+3 w^{2}+3 w+1\right)-5\left(w^{2}+2 w+1\right)+2 w+2-1=0 \\ & \Rightarrow 2 w^{4}+12 w^{3}+19 w^{2}+12 w+2=0 \end{aligned}$

