Roots of polynomials Cheat Sheet

This chapter is concerned with identifying the relationship between the roots of quadratic, cubic and quartic polynomials.

Roots of a quadratic equation

A quadratic equation could have 2 real roots, or 2 complex roots.

• If α and β are roots of the equation $ax^2 + bx + c = 0$, then:

$$\Rightarrow \alpha + \beta = -\frac{b}{a}$$
$$\Rightarrow \alpha \beta = \frac{c}{a}$$

Roots of a cubic equation

A cubic equation could have 3 real roots or 1 real root and 2 complex roots.

• If α , β and γ are roots of the equation $ax^3 + bx^2 + cx + d = 0$, then:

$$\Rightarrow \alpha + \beta + \gamma = -\frac{b}{a}$$
$$\Rightarrow \alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$$
$$\Rightarrow \alpha\beta\gamma = -\frac{d}{a}$$

Roots of a quartic equation

A quartic equation could have 4 real roots, 4 complex roots or 2 real and 2 complex roots.

If
$$\alpha$$
. β , γ and δ are roots of the equation $ax^4 + bx^3 + cx^2 + dx + e = 0$, then:
 $\Rightarrow \alpha + \beta + \gamma + \delta = -\frac{b}{a}$
 $\Rightarrow \alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta = \frac{c}{a}$
 $\Rightarrow \alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = -\frac{d}{a}$
 $\Rightarrow \alpha\beta\gamma\delta = \frac{e}{a}$
You can use the following abbreviation to simplify things:
 $\Sigma \alpha = -\frac{b}{a}, \Sigma \alpha\beta = \frac{c}{a}, \Sigma \alpha\beta\gamma = -\frac{d}{a}$

Expressions relating to the roots of a polynomial

You can use the following rules to quickly find the values of some expressions concerning the roots of a polynomial:

Linear transformations of roots

🕟 www.pmt.education 🛛 🖸 💿 🗗 😏 PMTEducation

Edexcel Core Pure 1

Example 2: The equation $mx^2 + 4x + 4m = 0$ has roots of the form k and 2k. Find the values of m and k.

Using $\alpha + \beta = -\frac{b}{a}$:	$\alpha + \beta = k + 2k = 3k = -\frac{4}{m}$
Simplifying:	$\therefore m = -\frac{4}{3k}$
Jsing $\alpha \beta = \frac{c}{a}$:	$\alpha\beta = (k)(2k) = 2k^2 = \frac{4m}{m} = 4$
implifying and solving for k:	$ k^2 = 2 So k = \pm \sqrt{2} $
We have two sets of solutions because k has two possible values. Use $m = -\frac{4}{3k}$ to	$If \ k = \sqrt{2}, m = -\frac{4}{3\sqrt{2}} = -\frac{2\sqrt{2}}{3}$
ind the corresponding value of m in each case.	$If \ k = -\sqrt{2}, m = \frac{4}{3\sqrt{2}} = \frac{2\sqrt{2}}{3}$

Example 4: The roots of the equation $x^4 + 2x^2 - x + 3 = 0$ are α, β, γ and δ . (a) Write down the values of $\sum \alpha, \sum \alpha\beta, \sum \alpha\beta\gamma$ and $\sum \alpha\beta\gamma\delta$. (b) Hence find the values of: (i) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta}$ (ii) $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$ (iii) $(\alpha + 1)(\beta + 1)(\gamma + 1)(\delta + 1)$	
Using $\sum \alpha = \alpha + \beta + \gamma + \delta = -\frac{b}{a}$:	$\alpha + \beta + \gamma + \delta = 0$
Using $\sum \alpha \beta = \frac{c}{a}$	$\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta$ $= \frac{2}{1} = 2$
Using $\sum \alpha \beta \gamma = -\frac{d}{a}$	$\sum \alpha \beta \gamma = \alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta$ $= -\frac{-1}{1} = 1$
Using $\alpha\beta\gamma\delta = \frac{e}{a}$	$\sum \alpha \beta \gamma \delta = \alpha \beta \gamma \delta = \frac{3}{1} = 3$
$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\alpha\beta\gamma + \beta\gamma\delta + \gamma\delta\alpha + \delta\alpha\beta}{\alpha\beta\gamma\delta}$	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} + \frac{1}{\delta} = \frac{\sum \alpha \beta \gamma}{\alpha \beta \gamma \delta} = \frac{1}{3}$
Using $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = (\alpha + \beta + \gamma + \delta)^2 - 2(\alpha\beta + \alpha\gamma + \alpha\delta + \beta\gamma + \beta\delta + \gamma\delta)$	$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2}$ $= \left(\sum_{\alpha} \alpha\right)^{2} - 2\left(\sum_{\alpha} \alpha\beta\right)$ $= (0)^{2} - 2(2) = -4$

